Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Antibiot (Tokyo) ; 77(5): 306-314, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438500

RESUMO

Antimicrobial resistance is a global health problem. In 2021, it was estimated almost half a million of multidrug-resistant tuberculosis (MDR-TB) cases. Besides, non-tuberculous mycobacteria (NTM) are highly resistant to several drugs and the emergence of fluoroquinolone (FQ) resistant M. tuberculosis (Mtb) is also a global concern making treatments difficult and with variable outcome. The aim of this study was to evaluate the activity of the FQ, DC-159a, against Mtb and NTM and to explore the cross-resistance with the currently used FQs.A total of 12 pre-extensively drug-resistant (XDR) Mtb, 2 XDR, 36 fully drug susceptible strains and 41 NTM isolates were included to estimate the in vitro activity of DC-159a, moxifloxacin (MOX) and levofloxacin (LX), using minimal inhibitory and bactericidal concentration (MIC and MBC). The activity inside the human macrophages and pulmonary epithelial cells were also determined.DC-159a was active in vitro and ex vivo against mycobacteria. Besides, it was more active than MOX/LX. Moreover, no cross-resistance was evidenced between DC-159a and LX/MOX as DC-159a could inhibit Mtb and MAC strains that were already resistant to LX/MOX.DC-159a could be a possible candidate in new therapeutic regimens for MDR/ XDR-TB and mycobacterioses cases.


Assuntos
Aminopiridinas , Fluoroquinolonas , Testes de Sensibilidade Microbiana , Moxifloxacina , Mycobacterium tuberculosis , Fluoroquinolonas/farmacologia , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Moxifloxacina/farmacologia , Antituberculosos/farmacologia , Micobactérias não Tuberculosas/efeitos dos fármacos , Levofloxacino/farmacologia , Macrófagos/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos
2.
Int Ophthalmol ; 44(1): 48, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38337066

RESUMO

PURPOSE: To compare the effect of povidone-iodine (PI) 5% and moxifloxacin 0.5% solutions versus PI 5% solution alone on the conjunctival bacterial flora. METHODOLOGY: This is a comparative study in which the study population comprised adult patients scheduled for elective small incision cataract surgery. The eye to be operated (control eye) received topical moxifloxacin 0.5% drops 4 times, 1 day before surgery and 2 applications on the day of surgery. As placebo, the contralateral eye (study eye) received saline 0.90% drops as per the same schedule. Before surgery, on table, PI 5% was instilled in the conjunctival sac in both eyes. Conjunctival swabs were taken before initiation of therapy and 3 min after instillation of PI. RESULTS: Of the 96 pairs of eyes included in the study, conjunctival cultures before prophylaxis were similar between the two groups (p = 0.31), with 54 samples (56%) of the study group and 49 (51%) of the control group showing growth. With positive cultures reducing to 7 (14%) in the study group and 8 (16%) in the control group, both the prophylaxis methods appeared equally efficacious (p = 0.79). Both the groups showed a significant reduction in positive cultures following prophylaxis (p < 0.0001). CONCLUSIONS: PI 5% alone as preoperative prophylaxis was as effective as its combination therapy with moxifloxacin 0.5% in the reduction in conjunctival bacterial colonization.


Assuntos
Extração de Catarata , Povidona-Iodo , Adulto , Humanos , Moxifloxacina/farmacologia , Povidona-Iodo/uso terapêutico , Antibacterianos , Estudos Prospectivos , Túnica Conjuntiva , Antibioticoprofilaxia
3.
Biophys Chem ; 298: 107029, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37150142

RESUMO

Lysozyme amyloidosis is a systemic non-neuropathic disease caused by the accumulation of amyloids of mutant lysozyme. Presently, therapeutic interventions targeting lysozyme amyloidosis, remain elusive with only therapy available for lysozyme amyloidosis being supportive management. In this work, we examined the effects of moxifloxacin, a synthetic fluoroquinolone antibiotic on the amyloid formation of human lysozyme. The ability of moxifloxacin to interfere with lysozyme amyloid aggregation was examined using various biophysical methods like Rayleigh light scattering, Thioflavin T fluorescence assay, transmission electron microscopy and docking method. The reduction in scattering and ThT fluorescence along with extended lag phase in presence of moxifloxacin, suggest that the antibiotic inhibits and impedes the lysozyme fibrillation in concentration dependent manner. From ANS experiment, we deduce that moxifloxacin is able to decrease the hydrophobicity of the protein molecule thereby preventing aggregation. Our CD and DLS results show that moxifloxacin stabilizes the protein in its native monomeric structure, thus also showing retention of lytic activity upto 69% and inhibition of cytotoxicity at highest concentration of moxifloxacin. The molecular docking showed that moxifloxacin forms a stable complex of -7.6 kcal/mol binding energy and binds to the aggregation prone region of lysozyme thereby stabilising it and preventing aggregation. Moxifloxacin also showed disaggregase potential by disrupting fibrils and decreasing the ß-sheet content of the fibrils. Our current study, thus highlight the anti-amyloid and disaggregase property of an antibiotic moxifloxacin and hence sheds light on the future of antibiotics against protein aggregation, a hallmark event in many neurodegenerative diseases.


Assuntos
Amiloidose , Antibacterianos , Humanos , Moxifloxacina/farmacologia , Moxifloxacina/uso terapêutico , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Muramidase/química , Amiloide/química , Proteínas Amiloidogênicas/química , Amiloidose/metabolismo
4.
Clin Pharmacol Drug Dev ; 12(8): 819-825, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37079714

RESUMO

Iberdomide is an orally available cereblon-modulating agent being developed for the treatment of hematologic malignancies and autoimmune-mediated diseases. To assess the potential concentration-QTc relationship in humans and to ascertain or exclude a potential QT effect by iberdomide, a plasma concentration and ΔQTcF (change from baseline of corrected QT interval using the Fridericia formula) model of iberdomide was developed. Iberdomide concentration and paired high-quality, intensive electrocardiogram signal from a single-ascending-dose study in healthy subjects (N = 56) were included in the analysis. The primary analysis was based on a linear mixed-effect model with ΔQTcF as the dependent variable; iberdomide plasma concentration and baseline QTcF as continuous covariates; treatment (active or placebo) and time as a categorical factor; and a random intercept per subject. The predicted change from baseline and placebo corrected (ΔΔQTcF) at the observed geometric mean maximum plasma concentration and 2-sided 90% confidence intervals at different dose levels were calculated. The upper bound of the 90% confidence interval of the model-predicted ΔΔQTcF effect at maximum concentration from the supratherapeutic dose of 6 mg (2.54 milliseconds) is <10-millisecond threshold, suggesting that iberdomide does not have a clinically relevant QT prolongation liability.


Assuntos
Fluoroquinolonas , Humanos , Moxifloxacina/farmacologia , Fluoroquinolonas/farmacologia , Método Duplo-Cego , Frequência Cardíaca , Relação Dose-Resposta a Droga
5.
Sci Rep ; 13(1): 4144, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914702

RESUMO

To exploit the advantageous properties of approved drugs to hasten anticancer drug discovery, we designed and synthesized a series of fluoroquinolone (FQ) analogs via functionalization of the acid hydrazides of moxifloxacin, ofloxacin, and ciprofloxacin. Under the NCI-60 Human Tumor Cell Line Screening Assay, (IIIf) was the most potent among moxifloxacin derivatives, whereas (VIb) was the only ofloxacin derivative with significant effects and ciprofloxacin derivatives were devoid of activity. (IIIf) and (VIb) were further selected for five-dose evaluation, where they showed potent growth inhibition with a mean GI50 of 1.78 and 1.45 µM, respectively. (VIb) elicited a more potent effect reaching sub-micromolar level on many cell lines, including MDA-MB-468 and MCF-7 breast cancer cell lines (GI50 = 0.41 and 0.42 µM, respectively), NSCLC cell line HOP-92 (GI50 = 0.50 µM) and CNS cell lines SNB-19 and U-251 (GI50 = 0.51 and 0.61 µM, respectively). (IIIf) and (VIb) arrested MCF-7 cells at G1/S and G1, respectively, and induced apoptosis mainly through the intrinsic pathway as shown by the increased ratio of Bax/Bcl-2 and caspase-9 with a lesser activation of the extrinsic pathway through caspase-8. Both compounds inhibited topoisomerase (Topo) with preferential activity on type II over type I and (VIb) was marginally more potent than (IIIf). Docking study suggests that (IIIf) and (VIb) bind differently to Topo II compared to etoposide. (IIIf) and (VIb) possess high potential for oral absorption, low CNS permeability and low binding to plasma proteins as suggested by in silico ADME calculations. Collectively, (IIIf) and (VIb) represent excellent lead molecules for the development of cytotoxic agents from quinolone scaffolds.


Assuntos
Antineoplásicos , Fluoroquinolonas , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Fluoroquinolonas/farmacologia , Moxifloxacina/farmacologia , Proliferação de Células , Pontos de Checagem do Ciclo Celular , Antineoplásicos/química , Linhagem Celular Tumoral , Ciprofloxacina/farmacologia , Apoptose , Ofloxacino/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Ciclo Celular
6.
Br J Clin Pharmacol ; 89(6): 1747-1755, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36504291

RESUMO

AIM: This thorough QT/QTc (TQT) study was conducted to evaluate the risk of QT prolongation for verinurad when combined with allopurinol. Verinurad is a novel, urate anion exchanger 1 inhibitor that reduces serum urate levels by promoting urinary excretion of uric acid. It is co-administered with a xanthine oxidase inhibitor. METHODS: The TQT study (NCT04256629) was a randomized, placebo-controlled, double-blind, three-period, crossover study, conducted in healthy volunteers. A total of 24 participants received single doses of verinurad 24 mg extended release, 40 mg immediate release formulation (both co-administered with allopurinol 300 mg), and matching placebos. The primary endpoint was baseline- and placebo-adjusted Fridericia-corrected QTcF interval (ΔΔQTcF) at the concentration of interest. A prespecified linear mixed-effects concentration-QTc model was used to estimate the primary endpoint. Time-matched 12-lead digital electrocardiograms and plasma concentrations were measured at baseline and up to 48 h after dose in each participant. RESULTS: Estimated ΔΔQTcF at the highest clinically relevant scenario (76 ng/mL) was -2.7 msec (90% confidence interval [CI]: -4.6, -0.8). Furthermore, the upper 90% ΔΔQTcF CI was estimated to be below 10 msec at all observed verinurad concentrations. Supratherapeutic verinurad dose was used to achieve exposures eightfold higher than the highest clinically relevant exposure, thus waiving the need for positive control. CONCLUSIONS: As the effect on ΔΔQTcF was below the threshold for regulatory concern (10 msec) at the supratherapeutic exposure, it can be concluded that verinurad and allopurinol treatment does not induce QTcF prolongation at the highest clinically relevant exposures.


Assuntos
Alopurinol , Síndrome do QT Longo , Humanos , Moxifloxacina/farmacologia , Estudos Cross-Over , Alopurinol/farmacologia , Ácido Úrico , Frequência Cardíaca , Relação Dose-Resposta a Droga , Eletrocardiografia , Método Duplo-Cego , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/diagnóstico
7.
Eur J Pharmacol ; 940: 175481, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36566005

RESUMO

The positive and pro-economic trend in the management of cancer treatment is the search for the antineoplastic potential of known, widely used and safe drugs with a different clinical purpose. A good candidate seems to be moxifloxacin with broad-spectrum antibacterial activity, which as the member of the fourth generation fluoroquinolone is known to affect not only bacterial but also eukaryotic DNA topoisomerases, however at high concentration. Due to the fact that the modification of parent drug with lipid component can improve anticancer potential by increasing of bioavailability, selectivity, and cytotoxic efficiency, we evaluated the mechanisms of cytotoxic activity of novel moxifloxacin conjugates with fatty acids and verified metabolic profile in SW480, SW620 and PC3 cell lines. Our study revealed that cytotoxic potential of moxifloxacin conjugates was stronger than free moxifloxacin, moreover, they remained non-toxic to normal HaCaT cells. PC3 were more sensitive to MXF conjugates than colon cancer cells. The most promising cytotoxic activity exhibited conjugate 4m and 16m with oleic and stearic acid reducing viability of PC3 and SW620 cells. Tested conjugates activated caspases 3/7 and induced late-apoptosis, mainly in PC3 and SW620 cells. However, the most pronounced inhibition of NF-κB activation and IL-6 secretion was observed in SW480. Metabolomic analysis indicated influence of the moxifloxacin conjugates on intensity of lipid derivatives with the most successful metabolite profile in PC3. Our findings suggested the cytotoxic potential of moxifloxacin conjugates, especially with oleic and stearic acid can be beneficial in oncological therapy, including their possible anti-inflammatory and known antibacterial effect.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Humanos , Masculino , Moxifloxacina/farmacologia , Ácidos Graxos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antibacterianos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Colo , Ácidos Esteáricos
8.
Braz J Infect Dis ; 26(5): 102701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36096158

RESUMO

INTRODUCTION: Spinal Tuberculosis (STB) represents between 1% and 2% of total tuberculosis cases. STB management remains challenging; the first-line approach consists of medical treatment, while surgery is reserved for patients with complications. No data regarding STB treatment with bedaquiline-containing regimens are available in the literature. CASE DESCRIPTION: Herein, we report the case of a 21-year-old man from Côte d'Ivoire with a multidrug resistance STB with subcutaneous abscess. After approval of the hospital off-label drug committee, we started bedaquiline 400 mg daily for two weeks, followed by 200 mg three times per week, for 22 weeks, associated with linezolid 600 mg daily, rifabutin 450 mg daily, and amikacin 750 mg daily (interrupted after eight weeks). During treatment, we performed a weekly EKG. No QT prolongation was shown, but inverted T waves appeared, requiring several cardiological consultations and cardiac MRI, but no cardiac dysfunction was found. After 24 weeks, bedaquiline was replaced with moxifloxacin 400 mg daily. The patient continued treatment for another year. We performed another computer tomography at the end of treatment, confirming the cure. DISCUSSION: A salvage regimen containing bedaquiline proved effective in treating multidrug-resistance tuberculosis spinal infection without causing severe adverse effects. However, further studies are needed to evaluate better bedaquiline bone penetration and the correct duration of treatment with bedaquiline in MDR spinal tuberculosis.


Assuntos
Mycobacterium tuberculosis , Osteomielite , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose da Coluna Vertebral , Abscesso/tratamento farmacológico , Adulto , Amicacina/farmacologia , Amicacina/uso terapêutico , Antituberculosos/efeitos adversos , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Humanos , Linezolida/farmacologia , Masculino , Moxifloxacina/farmacologia , Moxifloxacina/uso terapêutico , Uso Off-Label , Osteomielite/tratamento farmacológico , Rifabutina/farmacologia , Rifabutina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose da Coluna Vertebral/induzido quimicamente , Tuberculose da Coluna Vertebral/diagnóstico por imagem , Tuberculose da Coluna Vertebral/tratamento farmacológico , Adulto Jovem
9.
Pharmacol Rep ; 74(5): 1025-1040, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36045272

RESUMO

BACKGROUND: Microphthalmia-associated transcription factor (MITF) activates the expression of genes involved in cellular proliferation, DNA replication, and repair, whereas Mcl-1 is a member of the Bcl-2 family of proteins that promotes cell survival by preventing apoptosis. The objective of the present study was to verify whether the interaction between moxifloxacin (MFLX), one of the fluoroquinolones, and MITF/Mcl-1 protein, could affect the viability, proliferation, and apoptosis in human breast cancer using both in silico and in vitro models. METHODS: Molecular docking analysis (in silico), fluorescence image cytometry, and Western blot (in vitro) techniques were applied to assess the contribution of MITF and Mcl-1 proteins in the MFLX-induced anti-proliferative and pro-apoptotic effects on the MDA-MB-231 breast cancer cells. RESULTS: We indicated the ability of MFLX to form complexes with MITF and Mcl-1 as well as the drug's capacity to affect the expression of the tested proteins. We also showed that MFLX decreased the viability and proliferation of MDA-MB-231 cells and induced apoptosis via the intrinsic death pathway. Moreover, the analysis of the cell cycle progression revealed that MFLX caused a block in the S and G2/M phases. CONCLUSIONS: We demonstrated for the first time that the observed effects of MFLX on MDA-MB-231 breast cancer cells (growth inhibition and apoptosis induction) could be related to the drug's ability to interact with MITF and Mcl-1 proteins. Furthermore, the presented results suggest that MITF and Mcl-1 proteins could be considered as the target in the therapy of breast cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Moxifloxacina/farmacologia , Fator de Transcrição Associado à Microftalmia , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Apoptose
10.
Antimicrob Agents Chemother ; 66(9): e0059222, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35975988

RESUMO

Moxifloxacin is central to treatment of multidrug-resistant tuberculosis. Effects of moxifloxacin on the Mycobacterium tuberculosis redox state were explored to identify strategies for increasing lethality and reducing the prevalence of extensively resistant tuberculosis. A noninvasive redox biosensor and a reactive oxygen species (ROS)-sensitive dye revealed that moxifloxacin induces oxidative stress correlated with M. tuberculosis death. Moxifloxacin lethality was mitigated by supplementing bacterial cultures with an ROS scavenger (thiourea), an iron chelator (bipyridyl), and, after drug removal, an antioxidant enzyme (catalase). Lethality was also reduced by hypoxia and nutrient starvation. Moxifloxacin increased the expression of genes involved in the oxidative stress response, iron-sulfur cluster biogenesis, and DNA repair. Surprisingly, and in contrast with Escherichia coli studies, moxifloxacin decreased expression of genes involved in respiration, suppressed oxygen consumption, increased the NADH/NAD+ ratio, and increased the labile iron pool in M. tuberculosis. Lowering the NADH/NAD+ ratio in M. tuberculosis revealed that NADH-reductive stress facilitates an iron-mediated ROS surge and moxifloxacin lethality. Treatment with N-acetyl cysteine (NAC) accelerated respiration and ROS production, increased moxifloxacin lethality, and lowered the mutant prevention concentration. Moxifloxacin induced redox stress in M. tuberculosis inside macrophages, and cotreatment with NAC potentiated the antimycobacterial efficacy of moxifloxacin during nutrient starvation, inside macrophages, and in mice, where NAC restricted the emergence of resistance. Thus, NADH-reductive stress contributes to moxifloxacin-mediated killing of M. tuberculosis, and the respiration stimulator (NAC) enhances lethality and suppresses the emergence of drug resistance.


Assuntos
Mycobacterium tuberculosis , Tuberculose , 2,2'-Dipiridil/farmacologia , Animais , Antioxidantes/farmacologia , Catalase , Cisteína , Ferro , Quelantes de Ferro/farmacologia , Camundongos , Moxifloxacina/farmacologia , NAD , Espécies Reativas de Oxigênio/metabolismo , Enxofre/farmacologia , Tioureia , Tuberculose/microbiologia
11.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35682940

RESUMO

Novel conjugates (CP) of moxifloxacin (MXF) with fatty acids (1m-16m) were synthesized with good yields utilizing amides chemistry. They exhibit a more pronounced cytotoxic potential than the parent drug. They were the most effective for prostate cancer cells with an IC50 below 5 µM for respective conjugates with sorbic (2m), oleic (4m), 6-heptenoic (10m), linoleic (11m), caprylic (15m), and stearic (16m) acids. All derivatives were evaluated against a panel of standard and clinical bacterial strains, as well as towards mycobacteria. The highest activity towards standard isolates was observed for the acetic acid derivative 14m, followed by conjugates of unsaturated crotonic (1m) and sorbic (2m) acids. The activity of conjugates tested against an expanded panel of clinical coagulase-negative staphylococci showed that the compound (14m) was recognized as a leading structure with an MIC of 0.5 µg/mL denoted for all quinolone-susceptible isolates. In the group of CP derivatives, sorbic (2) and geranic (3) acid amides exhibited the highest bactericidal potential against clinical strains. The M. tuberculosis Spec. 210 strain was the most sensitive to sorbic (2m) conjugate and to conjugates with medium- and long-chain polyunsaturated acids. To establish the mechanism of antibacterial action, selected CP and MXF conjugates were examined in both topoisomerase IV decatenation assay and the DNA gyrase supercoiling assay, followed by suitable molecular docking studies.


Assuntos
Ciprofloxacina , Ácidos Graxos , Amidas , Antibacterianos/química , Antibacterianos/farmacologia , Ciprofloxacina/química , Ciprofloxacina/farmacologia , DNA Girase , Fluoroquinolonas/farmacologia , Humanos , Masculino , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Moxifloxacina/farmacologia
12.
Arh Hig Rada Toksikol ; 73(4): 260-269, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36607722

RESUMO

Moxifloxacin (MOX) is an important antibiotic commonly used in the treatment of recurrent Escherichia coli (E. coli) infections. The aim of this study was to investigate its antibacterial efficiency when used with solid lipid nanoparticles (SNLs) and nanostructured lipid carriers (NLCs) as delivery vehicles. For this purpose we designed two SLNs (SLN1 and SLN2) and two NLCs (NLC1 and NLC2) of different characteristics (particle size, size distribution, zeta potential, and encapsulation efficiency) and loaded them with MOX to determine its release, antibacterial activity against E. coli, and their cytotoxicity to the RAW 264.7 monocyte/macrophage-like cell line in vitro. With bacterial uptake of 57.29 %, SLN1 turned out to be significantly more effective than MOX given as standard solution, whereas SLN2, NLC1, and NLC2 formulations with respective bacterial uptakes of 50.74 %, 39.26 %, and 32.79 %, showed similar activity to standard MOX. Cytotoxicity testing did not reveal significant toxicity of nanoparticles, whether MOX-free or MOX-loaded, against RAW 264.7 cells. Our findings may show the way for a development of effective lipid carriers that reduce side effects and increase antibacterial treatment efficacy in view of the growing antibiotic resistance.


Assuntos
Antineoplásicos , Nanopartículas , Moxifloxacina/farmacologia , Escherichia coli , Portadores de Fármacos , Nanopartículas/toxicidade , Antibacterianos/toxicidade , Lipídeos
13.
Drug Chem Toxicol ; 45(6): 2686-2698, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34601990

RESUMO

Fluoroquinolones (FQs) are synthetic and broad-spectrum antimicrobial drugs derived from nalidixic acid. FQs are used against SARS-CoV-2 in our country, and for the treatment of some urinary tract diseases, gastrointestinal diseases, respiratory tract diseases, sexually transmitted diseases, and dermatological diseases. The present study investigated the effect of 1-,7-,14-day treatments of three different FQ derivatives; ciprofloxacin (CIP) 80 mg/kg/day, levofloxacin (LVX) 40 mg/kg/day, and moxifloxacin (MXF) 40 mg/kg/day, on biochemical parameters, lipid peroxidation, antioxidant enzymes, and immunotoxicity. 72 Wistar albino male rats were distributed to four groups including 18 rats in each group and were sacrificed on three different time points. The 14-day treatment of MXF significantly reduced the levels of aspartate aminotransferase (AST), glucose, reduced glutathione (GSH), malondialdehyde (MDA), catalase (CAT), myeloperoxidase (MPO), adenosine deaminase (ADA), and glutathione peroxidase (GPx). Furthermore, 14-day treatment of LVX increased liver [GSH, MPO, ADA, superoxide dismutase (SOD)], and GSH (erythrocyte) levels; whereas it significantly reduced the levels of AST, TG (triglycerides) and associated parameters levels in all the tissues (MDA), erythrocytes, and liver (MPO, CAT, SOD, GPx). After 14-day treatment of CIP; the erythrocyte levels of GSH, MPO, GPx, and CAT significantly decreased; whereas the levels of glucose, creatinine, MPO (liver), and GST (kidney and erythrocyte) significantly increased. It has been concluded that FQ derivatives used in this experiment did not display any correlation in terms of the efficacies in the different time points and tissues. Thus, it is recommended to use such FQ derivatives considering the duration of use and target tissue.


Assuntos
Antioxidantes , COVID-19 , Animais , Ratos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidase/farmacologia , Adenosina Desaminase/farmacologia , Fluoroquinolonas/toxicidade , Creatinina , Levofloxacino/farmacologia , Moxifloxacina/farmacologia , Ácido Nalidíxico/farmacologia , Ratos Wistar , SARS-CoV-2 , Peroxidação de Lipídeos , Glutationa/metabolismo , Malondialdeído , Superóxido Dismutase/metabolismo , Triglicerídeos , Aspartato Aminotransferases , Glucose , Ciprofloxacina/farmacologia , Estresse Oxidativo
14.
Sci Rep ; 11(1): 24115, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916593

RESUMO

Intraocular antibiotic delivery is an important technique to prevent bacterial infection after ophthalmic surgery, such as cataract surgery. Conventional drug delivery methods, such as antibiotic eye drops, have limitations for intraocular drug delivery due to the intrinsic barrier effect of the cornea. Therefore, frequent instillation of antibiotic eyedrops is necessary to reach a sufficient bactericidal concentration inside the eye. In this study, an intraocular implant, MXF-HA, that combines hyaluronic acid (HA) and moxifloxacin (MXF) was developed to increase the efficiency of intraocular drug delivery after surgery. MXF-HA is manufactured as a thin, transparent, yellow-tinted membrane. When inserted into the eye in a dry state, MXF-HA is naturally hydrated and settles in the eye, and the MXF contained therein is delivered by hydrolysis of the polymer over time. It was confirmed through in vivo experiments that MXF delivery was maintained in the anterior chamber of the eye at a concentration sufficient to inhibit Pseudomonas aeruginosa and Staphylococcus aureus for more than 5 days after implantation. These results suggest that MXF-HA can be utilized as a potential drug delivery method for the prevention and treatment of bacterial infections after ophthalmic surgery.


Assuntos
Antibacterianos/administração & dosagem , Ácido Hialurônico/administração & dosagem , Bombas de Infusão Implantáveis , Moxifloxacina/administração & dosagem , Animais , Antibacterianos/farmacologia , Infecções Bacterianas/prevenção & controle , Extração de Catarata/efeitos adversos , Liberação Controlada de Fármacos , Farmacorresistência Bacteriana , Moxifloxacina/farmacologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Pseudomonas aeruginosa/efeitos dos fármacos , Coelhos , Ratos , Staphylococcus aureus/efeitos dos fármacos
15.
Dis Model Mech ; 14(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34486033

RESUMO

Tuberculosis (TB) treatment regimens are lengthy, causing non-adherence to treatment. Inadequate treatment can lead to relapse and the development of drug resistance TB. Furthermore, patients often exhibit residual lung damage even after cure, increasing the risk for relapse and development of other chronic respiratory illnesses. Host-directed therapeutics are emerging as an attractive means to augment the success of TB treatment. In this study, we used C3HeB/FeJ mice as an experimental model to investigate the potential role of rapamycin, a mammalian target of rapamycin inhibitor, as an adjunctive therapy candidate during the treatment of Mycobacterium tuberculosis infection with moxifloxacin. We report that administration of rapamycin with or without moxifloxacin reduced infection-induced lung inflammation, and the number and size of caseating necrotic granulomas. Results from this study strengthen the potential use of rapamycin and its analogs as adjunct TB therapy, and importantly underscore the utility of the C3HeB/FeJ mouse model as a preclinical tool for evaluating host-directed therapy candidates for the treatment of TB.


Assuntos
Pulmão/patologia , Sirolimo/farmacologia , Tuberculose/microbiologia , Tuberculose/patologia , Animais , Linfócitos B/efeitos dos fármacos , Agregação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Pulmão/imunologia , Camundongos , Moxifloxacina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Necrose , Infiltração de Neutrófilos/efeitos dos fármacos , Ácidos Polimetacrílicos/farmacologia , Tuberculose/imunologia
16.
Cornea ; 40(10): 1348-1352, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34481412

RESUMO

PURPOSE: To describe a small case series of infectious keratitis with poor visual outcomes after amniotic membrane (AM) placement and to prospectively evaluate whether AM demonstrates antibacterial activity in vitro against pathogens commonly isolated from infectious corneal ulcers. METHODS: A retrospective case series and in vitro study of antibacterial activity of dehydrated AM using disk diffusion and measurement of inhibitory zones for bacterial assessment and inverted microscopy analysis for Acanthamoeba sp. growth. RESULTS: Three cases of known etiology infectious keratitis are described where the clinical presentation worsened after treatment with AM. In vitro analysis of dehydrated AM, with and without a soft contact lens, demonstrated no inhibition of growth against Pseudomonas aeruginosa or Streptococcus pneumoniae. There was minimal growth inhibition of Staphylococcus aureus, although these zones of inhibition were much smaller than that surrounding the positive control. For Acanthamoeba sp., solubilized, dehydrated AM did not alter cyst density. CONCLUSIONS: In an in vitro analysis, dehydrated AM did not provide evidence for a potentially clinically meaningful antibacterial effect against organisms commonly isolated from corneal ulcers.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Âmnio/microbiologia , Âmnio/parasitologia , Moxifloxacina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Ceratite por Acanthamoeba/parasitologia , Ceratite por Acanthamoeba/cirurgia , Adolescente , Adulto , Âmnio/transplante , Antibacterianos/farmacologia , Infecções Oculares Bacterianas/microbiologia , Infecções Oculares Bacterianas/cirurgia , Humanos , Ceratite/microbiologia , Ceratite/cirurgia , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Infecções por Pseudomonas/cirurgia , Estudos Retrospectivos , Infecções Estafilocócicas/cirurgia , Infecções Estreptocócicas/cirurgia
17.
Microbiol Spectr ; 9(2): e0043421, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34585951

RESUMO

The therapeutic repertoire for tuberculosis (TB) remains limited despite the existence of many TB drugs that are highly active in in vitro models and possess clinical utility. Underlying the lack of efficacy in vivo is the inability of TB drugs to penetrate microenvironments inhabited by the causative agent, Mycobacterium tuberculosis, including host alveolar macrophages. Here, we determined the ability of the phenoxazine PhX1 previously shown to be active against M. tuberculosis in vitro to differentially penetrate murine compartments, including plasma, epithelial lining fluid, and isolated epithelial lining fluid cells. We also investigated the extent of permeation into uninfected and M. tuberculosis-infected human macrophage-like Tamm-Horsfall protein 1 (THP-1) cells directly and by comparing to results obtained in vitro in synergy assays. Our data indicate that PhX1 (4,750 ± 127.2 ng/ml) penetrates more effectively into THP-1 cells than do the clinically used anti-TB agents, rifampin (3,050 ± 62.9 ng/ml), moxifloxacin (3,374 ± 48.7 ng/ml), bedaquiline (4,410 ± 190.9 ng/ml), and linezolid (770 ± 14.1 ng/ml). Compound efficacy in infected cells correlated with intracellular accumulation, reinforcing the perceived importance of intracellular penetration as a key drug property. Moreover, we detected synergies deriving from redox-stimulatory combinations of PhX1 or clofazimine with the novel prenylated amino-artemisinin WHN296. Finally, we used compound synergies to elucidate the relationship between compound intracellular accumulation and efficacy, with PhX1/WHN296 synergy levels shown to predict drug efficacy. Collectively, our data support the utility of the applied assays in identifying in vitro active compounds with the potential for clinical development. IMPORTANCE This study addresses the development of novel therapeutic compounds for the eventual treatment of drug-resistant tuberculosis. Tuberculosis continues to progress, with cases of Mycobacterium tuberculosis (M. tuberculosis) resistance to first-line medications increasing. We assess new combinations of drugs with both oxidant and redox properties coupled with a third partner drug, with the focus here being on the potentiation of M. tuberculosis-active combinations of compounds in the intracellular macrophage environment. Thus, we determined the ability of the phenoxazine PhX1, previously shown to be active against M. tuberculosis in vitro, to differentially penetrate murine compartments, including plasma, epithelial lining fluid, and isolated epithelial lining fluid cells. In addition, the extent of permeation into human macrophage-like THP-1 cells and H37Rv-infected THP-1 cells was measured via mass spectrometry and compared to in vitro two-dimensional synergy and subsequent intracellular efficacy. Collectively, our data indicate that development of new drugs will be facilitated using the methods described herein.


Assuntos
Antituberculosos/metabolismo , Tuberculose/metabolismo , Animais , Antituberculosos/química , Antituberculosos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Moxifloxacina/química , Moxifloxacina/metabolismo , Moxifloxacina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/química , Rifampina/metabolismo , Rifampina/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tuberculose/fisiopatologia
18.
Drug Des Devel Ther ; 15: 3937-3952, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34556975

RESUMO

BACKGROUND/OBJECTIVE: Periodontitis is a widely spread oral infection and various antibiotics are utilized for its treatment, but high oral doses and development of antibiotic resistance limit their use. This study was aimed at development of natural polymer-based mucoadhesive bilayer films loaded with moxifloxacin hydrochloride (Mox) and clove essential oil (CEO) to potentially combat bacterial infection associated with periodontitis. METHODS: Films were synthesized by double solvent casting technique having an antibiotic in the gellan gum-based primary layer with clove oil in a hydroxyethyl cellulose-based secondary layer. RESULTS: Prepared films were transparent, flexible, and showed high antibacterial response against both gram-positive and gram-negative bacteria. The films showed excellent pharmaceutical attributes in terms of drug content, folding endurance, swelling index, and mucoadhesive strength. Solid state characterization of formulation showed successful incorporation of drug and oil in separate layers of hydrogel structure. An in-vitro release study showed an initial burst release of drug followed by sustained release for up to 48 hours. CONCLUSION: The prepared mucoadhesive bilayer buccal films could be used as a potential therapeutic option for the management of periodontitis.


Assuntos
Antibacterianos/farmacologia , Óleo de Cravo/farmacologia , Moxifloxacina/farmacologia , Polissacarídeos Bacterianos/química , Adesividade , Administração Bucal , Antibacterianos/administração & dosagem , Antibacterianos/química , Química Farmacêutica/métodos , Óleo de Cravo/administração & dosagem , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Moxifloxacina/administração & dosagem , Moxifloxacina/química , Óleos Voláteis/administração & dosagem , Óleos Voláteis/farmacologia , Periodontite/tratamento farmacológico , Periodontite/microbiologia
19.
ACS Appl Mater Interfaces ; 13(36): 42329-42343, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34464076

RESUMO

Bacterial biofilms are a major health concern, mainly due to their contribution to increased bacterial resistance to well-known antibiotics. The conventional treatment of biofilms represents a challenge, and frequently, eradication is not achieved with long-lasting administration of antibiotics. In this context, the present work proposes an innovative therapeutic approach that is focused on the encapsulation of N-acetyl-l-cysteine (NAC) into lipid nanoparticles (LNPs) functionalized with d-amino acids to target and disrupt bacterial biofilms. The optimized formulations presented a mean hydrodynamic diameter around 200 nm, a low polydispersity index, and a high loading capacity. These formulations were stable under storage conditions up to 6 months. In vitro biocompatibility studies showed a low cytotoxicity effect in fibroblasts and a low hemolytic activity in human red blood cells. Nevertheless, unloaded LNPs showed a higher hemolytic potential than NAC-loaded LNPs, which suggests a safer profile of the latter. The in vitro antibiofilm efficacy of the developed formulations was tested against Staphylococcus epidermidis (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) mature biofilms. The results showed that the NAC-loaded LNPs were ineffective against S. epidermidis biofilms, while a significant reduction of biofilm biomass and bacterial viability in P. aeruginosa biofilms were observed. In a more complex therapeutic approach, the LNPs were further combined with moxifloxacin, revealing a beneficial effect between the LNPs and the antibiotic against P. aeruginosa biofilms. Both alone and in combination with moxifloxacin, unloaded and NAC-loaded LNPs functionalized with d-amino acids showed a great potential to reduce bacterial viability, with no significant differences in the presence or absence of NAC. However, the presence of NAC in NAC-loaded functionalized LNPs shows a safer profile than the unloaded LNPs, which is beneficial for an in vivo application. Overall, the developed formulations present a potential therapeutic approach against P. aeruginosa biofilms, alone or in combination with antibiotics.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Portadores de Fármacos/farmacologia , Lipossomos/química , Nanopartículas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Acetilcisteína/química , Acetilcisteína/toxicidade , Animais , Antibacterianos/química , Antibacterianos/toxicidade , Linhagem Celular , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Sinergismo Farmacológico , Humanos , Lipossomos/toxicidade , Camundongos , Testes de Sensibilidade Microbiana , Moxifloxacina/farmacologia , Nanopartículas/toxicidade , Palmitatos/química , Palmitatos/toxicidade , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/toxicidade , Polietilenoglicóis/química , Polietilenoglicóis/toxicidade , Pseudomonas aeruginosa/fisiologia
20.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805837

RESUMO

For over 50 years, patients with drug-sensitive and drug-resistant tuberculosis have undergone long, arduous, and complex treatment processes with several antimicrobials. With the prevalence of drug-resistant strains on the rise and new therapies for tuberculosis urgently required, we assessed whether manipulating iron levels in macrophages infected with mycobacteria offered some insight into improving current antimicrobials that are used to treat drug-resistant tuberculosis. We investigated if the iron chelator, desferrioxamine, can support the function of human macrophages treated with an array of second-line antimicrobials, including moxifloxacin, bedaquiline, amikacin, clofazimine, linezolid and cycloserine. Primary human monocyte-derived macrophages were infected with Bacillus Calmette-Guérin (BCG), which is pyrazinamide-resistant, and concomitantly treated for 5 days with desferrioxamine in combination with each one of the second-line tuberculosis antimicrobials. Our data indicate that desferrioxamine used as an adjunctive treatment to bedaquiline significantly reduced the bacterial load in human macrophages infected with BCG. Our findings also reveal a link between enhanced bactericidal activity and increases in specific cytokines, as the addition of desferrioxamine increased levels of IFN-γ, IL-6, and IL-1ß in BCG-infected human monocyte-derived macrophages (hMDMs) treated with bedaquiline. These results provide insight, and an in vitro proof-of-concept, that iron chelators may prove an effective adjunctive therapy in combination with current tuberculosis antimicrobials.


Assuntos
Antituberculosos/farmacologia , Desferroxamina/farmacologia , Diarilquinolinas/farmacologia , Quelantes de Ferro/farmacologia , Ferro/metabolismo , Macrófagos/efeitos dos fármacos , Mycobacterium bovis/efeitos dos fármacos , Amicacina/farmacologia , Carga Bacteriana/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clofazimina/farmacologia , Ciclosserina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico , Expressão Gênica , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Linezolida/farmacologia , Macrófagos/imunologia , Macrófagos/microbiologia , Testes de Sensibilidade Microbiana , Moxifloxacina/farmacologia , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium bovis/metabolismo , Cultura Primária de Células , Pirazinamida/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA